
Webinar: The Future of AI-Driven R&D: Short-Term and Long-Term Impact

Carbon dioxide (Co2) is one of the atmospheric "greenhouse gases" that absorbs and radiates heat gradually over time and contributes to the natural warming of the Earth known as the greenhouse effect. Notably, increases in atmospheric CO2 are responsible for about 2/3 of the total energy imbalance that is causing Earth's temperature to rise.
The built environment generates nearly 50% of annual global CO2 emissions. Of those total emissions, building operations are responsible for 27% annually, while building materials and construction are responsible for an additional 20% annually.
As a result, measures are being taken to create structures and building materials that are carbon-neutral, and even carbon negative, to reduce the amount of CO2 in the atmosphere. One such project was announced this week by the U.S. Department of Energy.
The U.S. Department of Energy (DOE) announced Monday that it is awarding $39 million in grants, primarily to universities, for 18 projects seeking to develop technologies that can transform buildings into net carbon storage structures.
The awards are part of DOE’s Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) program, and will prioritize overcoming barriers associated with carbon-storing buildings, including scarce, expensive, and geographically limited building materials. The overarching goal is to increase the amount of carbon that can be stored in buildings so they become “carbon sinks”— materials or processes that absorb more carbon from the atmosphere than they release. The decarbonization goals for this program fall in line with President Jo Biden’s call for the federal government to reach net-zero emissions by 2050.
Of the greenhouse gases, carbon dioxide is known to absorb less heat per molecule than the greenhouse gases methane or nitrous oxide, be more abundant, and stay in the atmosphere much longer. When it comes to how CO2 factors into buildings, the DOE reports that greenhouse gas emissions associated with material manufacturing and construction, renovation and disposal of buildings at the end of their service life are concentrated at the start of a building's lifetime. As a result, it's important to address greenhouse gas emissions when it comes to materials, design, and building techniques.
According to U.S. Secretary of Energy Jennifer M. Granholm, “There’s huge, untapped potential in reimagining building materials and construction techniques as carbon sinks that support a cleaner atmosphere and advance President Biden’s national climate goals. This is a unique opportunity for researchers to advance clean energy materials to tackle one of the hardest to decarbonize sectors that is responsible for roughly 10% of total annual emissions in the United States.”
The teams are comprised of universities, private companies, and national laboratories, and will develop and demonstrate building materials and net carbon negative whole-building designs. HESTIA project titles, locations, and award amounts are listed below. For more detailed information on each project, visit HESTIA project descriptions.
Given the funding the DOE is devoting to decarbonization technologies, it's safe to say that research and investment into the area is on the rise. According to our data, there are 1584 players in the market operating across 3723 technologies. To learn more about innovation activity in the decarbonization space, visit cypris.ai and get started with access to the innovation dashboard.
Sources:
https://architecture2030.org/why-the-building-sector/#:~:text=The%20built%20environment%20generates%20nearly,for%20an%20additional%2020%25%20annually.
https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide#:~:text=Increases%20in%20atmospheric%20carbon%20dioxide,in%20a%20can%20of%20soda.